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NOTATION

Symbol Definition Dimensions

A Submerged cross-sectional area ft 2

A0 , A 1 ... Coefficients in ship line function

a1 , a 3 , a 5 m, Parameters used in determining added

n. p, P7, r 1 r, mass; see Appendix B2.3

s i p s 2 ,

a, b, c Coefficients in ship line function

(Cv); (Cv) Added mass coefficient; added mass
coefficient for draft y'

C, Damping forces per unit velocity per 2

unit length; ton-sec!ft

c, c', c"t Half-breadth of ship at immersion
y', y, and y"', respectively ft

D Still-water draft ft

dx _ de Longitudinal velocity ft/sec
dt dt

E Modulus of elasticity in tension and
compression ton-ft 2

El Flexural rigidity of hull ton-ft 2

f (y) Half-breadth corresponding to
level y ft

G Modulus of elasticity in shear ton/ft 2

g Vertical acceleration of hull due to 2
gravity ft / sec

h Wave height ft
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Symbol Definition Dimensions

I Moment of inertia of submerged cross

section about transverse axis in free
surface ft 4

f Function of I defined in Appendix B2.3 dimensionless

I Mass polar moment of inertia per unit
ft Z length of section of hull A x long taken

about a horizontal axis through its c. g.
(including allowance for virtual mass 2

of surrounding water) ton-sec

KDefined in Section B 2.6

K Shear flexibility factor;

r(++I%) F I -p~) Cosf ;

KAG Shear rigidity of hull ton

M Bending moment on hull ft -ton

m Hydrodynamic added mass per unit slugs/ft
length lb-sec 2 /ft2

also
2

ton-sec

ft
2

m Ship mass per unit length slugs/f al o
ton-sec /ft

n, n + 1/2 Station and midstation numbers,
respectively, for ship where
stations run 0 (tern), 1, ... N-i,
N (bow) and midstations run 1/2,
1 1/2, ... N - 1/2; Nis also distance
along normal to surface ft

P(x, t) Total force per unit length acting upon
the ship hull ton/ft

P e e  Defined on Pages 70-71 of Reference 1
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Symbol Definition Dimensions

t Time sec

U Uniform forward velocity of ship
along its heading ft/sec

u In general, the horizontal component
of particle velocity at any depth in the
undisturbed fluid ft/sec

V Vertical shearing force acting on hull ton

V Velocity of wave propagation ft/sec
w

v, v In general, the vertical component of ft/sec and
particle velocity and acceleration, 2
respectively, at any depth respectively

W Weight of hull per unit length ton/ft

x Abscissa or axis of abscissas in a
rectangular coordinate system; a
coordinate indicating distance from
wave crest of point on ship; horizontal
displacement of particle at time t;
particle coordinate of particle at rest;
longitudinal distance measured from
stern of ship ft

x Distance from stern to center of
c. g. gravity ft

(y, z) Coordinate of ship profile fbr each
section ft

y Ordinate or axis of ordinate in a
rectangular coordinate system;
immersion; particle coordinate of a
particle at rest ft

y Lateral deflection of hull ft

Sr Immersion velocity ft/sec

vii



Symbol Definitions Dimensions

y , y , ytt" Draft; (See Appendix B of Reference 1) ft

Ye Elastic (flexural) component of y ft

Yh' Yh 'Displacement and vertical velocity of ft and ft/sec,
kedl, respectively, due to heave respectively

Yi i +1 water level, i = 0,
1... N-1 ft

y p Displacement and vertical velocity of ft and ft/sec,
keel, respectively, due to pitch respectively

Downward relative velocity of hull with
respect to fluid undisturbed by ship
(not wave) ft/sec

Yw Elevation of wave surface above mean
water level ft

Z, z Complex variables for the transformed
and circle planes, respectively

18 Deadrise angle deg

y, y Rotation and angular velocity, respectively,
of transverse sections with respect to a radians and
horizontal axis radians/sec,

respectively

At Time interval or increment sec

Atx Length of element, 1/20; increment
of length ft

4Distance of station n forward of position
of heave meter ft

Vertical displacement from rest condition
and associated vertical velocity of ft and
particle at arbitrary depth y; section area ft/sec,
coefficient (dimensionless) respectively

viii



Symb?.ol Definition Dimensions

0 2 1rx radians
A

0 Value of 0 at any station n (equal to
n t

0.1366 + 0. 2732 n - 2.732) radians
0.1096

0 Ship's heading deg

A Wave length ft

Mass per unit length of hull (including 2 2
allowance for virtual mass) ton-sec /ft

, is distance of any station n along
keel forward of midlength; horizontal ft and ft/sec,
velocity of a particle at arbitrary depth respectively

y

Value of e at station n ft
24

P Density of sea water lb-sec /ft 4

, 'P Pitch angle and angular velocity, radians or deg
respectively and deg/sec,

respectively

Angular velocity radians/sec

ix



ABSTRACT

This report describes a method for obtaining digital

computer solutions for the excitation forces on and transient

response of a ship subject to (hydrodynamic) slam when

certain basic data are obtained by computation rather than

by measurement.

The method is based on a theory shown in TMB

Report 1511 to be in good agreement with experiment for a

particular application.

INTRODUCTION

A theoretical analysis and manual computation of the "slamming"

(hydrodynamic) forces acting on a ship, based upon an experimental

knowledge of the rigid-body motions of the ship relative to the wave, was

presented in Reference 1. These forces are considered to be due to

the time rate of change of fluid momentum and to buoyancy forces incident

to immersion of the hull. In addition, by use of a digital computer, a

computation was made of the transient elastic response and associated

hull girder stresses of the ship due to the total force exerted by the fluid

In this report we are considering the slamming forces associated with
immersion of a flared bow rather than bottom impact or side pounding
forces. The forces referred to here are the time-varying equivalent or
ifitegrated load force on each cross section rather than the detailed load
distribution around the cross section.

References are listed on page 37.



on the ship. A comparison between the theoretical and measured stresses

for the Dutch destroyer showed good agreement. This method, therefore,

offers promise for evaluating various hull shapes in the early design

stage if a practical computational procedure, requiring a minimum of in-

put data, can be established. Specifically, it is desirable to reduce the

complexity, expense, time, labor, and errors often involved in making

numerical computations for predicting the slamming forces on and the

dynamic (elastic and rigid-body) response of a ship girder without a

prior experimental knowledge of the rigid-body and flexural motions of a

ship relative to the wave.

Accordingly, the objective of this report is to describe a method

for obtaining digital computer solutions for the excitation forces on and

transient response of a slammed ship when certain basic data are obtained

by computation rather than by measurement. Moreover, as shown in

Reference 2, those parts of the basic data which involve ship properties

may also be computed digitally rather than manually using tabulated quan-

tities systematically obtained in a prescribed fashion directly from ship

plans.

A digital computer (IBM 7090) is presently being coded at the

Applied Mathematics Laboratory of the David Taylor Model Basin to ob-

tain solutions in accordance with this method; this code includes a digital

computer routine for computing the hull parameters.
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METHOD OF ATTACK

The following procedure, based upon the theory of Reference 1, is

used to solve for the excitation forces on and the response of the ship for

an arbitrary transient wave of encounter:

a. The basic finite difference equations of motion used to obtain

the damped transient vertical response of a ship to slamming forces,

derived in Appendix F of Reference 1, are coded for solution. For con-

venience of reference, the corresponding differential equations are re-

written in Appendix A.

b. Time-independent ship data required for solution of these

equations are furnished to the digital computer; see Appendix B.

dx
c. Time-dependent data (e.g., m, j-, Yr Pe1 2, etc.) required

for solution of these equations, are computed by the digital computer from

other time -independent data, some additional constants, and several

points that describe each ship line 3 (i.e., cross-sectional profile); see

Appendix B.

d. The dynamic elastic and rigid-body response of the ship due

to slom is represented by the digital computer solution of the finite dif-

ference equations corresponding to the differential equations of AppendiA

A, using data obtained in accordance with Items b and c.

An alternative method of attack which was presented in Reference

1, is compared with this new method in Appendix C.
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The application of this method to an arbitrary transient wave of

encounter is discussed in Appendix D.

DISCUSSION

In the process of digitally computing the forces on and transient

response of a slammed ship, intermediate calculations of added (i.e.,

virtual) mass and ship properties are performed by means of a digital

computer. The digital computation of the added mass, using functions

3
approximating a ship line (i. e., here a cross -sectional profile) and of

Landweberls 4 , 5 equations is given in Appendix B. Landweber's equa-

tions include those of Lewis 6 and Prohaska 7 as a special case. Refer-

ence 2 describes the digital computation of the ship properties (i. e., hull

parameters) using data tabulations obtained by a pre-established orderly

procedure from ship plans. These apparently novel methods for obtaining

virtual mass and ship properties should tend to reduce the cost, time,

complexity, labor, and errors usually involved in making such computa-

tions.

The digital calculations are of special interest because their ap-

plicability extends beyond the present problem to other vibration problem

areas in which the hull is also treated as a beam. Thus their application

pertains to the determination of the normal mode response of a hull, 8

9
steady-state response of a hull to a sinusoidal driving force, flutter

4i



response of a hull-control surface system subject to hydrodynamic

forces on the rudder, 10,11 etc. Such mechanization fits the trend to-

ward routinizing complex calculations which lead to eventual design

utility.

CONCLUSIONS

A method has been devised for obtaining digital computer solutions

for excitation forces on and transient response of a ship subject to hy-

drodynamic "slamming" forces when certain basic data are obtained by

computation rather than by measurement. This method reduces the

complexity, expense, time, labor, and errors heretofore connected with

obtaining such solutions. Consequently, while a ship is still on the draw-

ing board, it now appears possible and practical to use a high-speed and

flexible computer to determine the response to slam for several different

combinations of parameters that represent different ship-sea character-

istics (see Appendix D) and operating conditions.

See first footnote on'page 1.
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RECOMMENDATIONS

It is recommended that this method be used in the early design

stages to evaluate the response of various hull shapes to slamming

forces of the type described in this report. Computer results obtained by

systematically varying sea states, ship parameters, ship geometry (hull

shape), speed, heading, etc., presented in the form of design curves,

should prove helpful in furnishing useful hull design information for direct

use by the Preliminary Design Branch of the Bureau of Ships.
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I The severity of hull girder stresses incident to bow immersion was

strikingly demonstrated by observations and analyses of strains measured
on USS ESSEX (CVA9) during a storm passage around Cape Horn; see
Reference 12.

.1.1 This would require some modification of the method corresponding to
the mathematical description of the wave of encounter under consideration;
see Appendix D.

q*-- Mrs. Susan J. Voigt is presently working on a digital computer code,
using the equations presented in this report, for computing the slamming
forces on and response of a ship's hull. It is planned to issue a separate
report on this computer program.
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APPENDIX A

DIFFERENTIAL EQUATIONS FOR OBTAINING RESPONSE
OF A SHIP TO SLAMMING FORCE

The basic differential equations used to describe the motions of a

ship subject to slam, derived in Appendix F of Reference 1, are (see

1
notation): (The corresponding finite difference equations have been coded

for the IBM 7090).

(x, + '(x,t) Pmx, t)+ dxx,t) +(Mt) 1 a V, )
dt KA G (x) at ~

av(xt) - dx (x t)
+ a x P(x,t0 + m(xt) dt' ON

1 a I(x, ) a,(x,t)
EI(x) at ax

11z x) - Ox + V(x,t) = 0
a t a x

1 av(x,t) a (x, t) t)
A+ ax tx,t)

ay,(X,t)

at " =  (x't)

7



where

p(x,0 = M (x,t) + mS (X)

am(X t) ant CX t) ax CX, )
c(x,t) = (xt) + a + )at ax at

x, t) = Pe (x,)-ms -- + dht - {(X,t) [ (X ,t + (X,t)]

P (x,t) = Re (x,t)- gms (x)

dRe (x, t) - (m~r + (g + 0) pA

and where for present and future use we define:

t Time; sec

x Distance coordinate along longitudinal centerline axis of ship

hull; the independent variable x as used in the equations lies

along the same axis as , hence dx=de and d a

Note, however, that this is not the same x used in Figure 1 of

Reference 1 and in other parts of that reference where x is

normal to the wavefront; ft

The damping terms c and c here replace c and c in the corresponding
equations in Appendix F1 of Reference 1. In contrast to Reference 1, this
change in notation now permits a unique definition for the symbol c ; i. e.,
half-breadth of the ship at a particular immersion.

For more complete definitions, see Reference 8.
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L- Total vertical displacement of point of beam (hull) initially on

x-axis, i.e., displacement of point from equilibrium position in

still water; ft

Yj Elastic (flexural) component of y; ft

Yh' J'h Displacement and vertical velocity of keel, respectively, due to

heave; ft and ft/sec, respectively

yp, Displacement and vertical velocity of keel, respectively, due
p

to pitch; ft and ft/sec, respectively

r Downward relative velocity of hull with respect to fluid undis-

turbed by ship (not wave); ft/sec

Y Rotation of transverse section about an axis through the section

normal to the x-y plane; radians

M Bending moment; ft-ton

m Hydrodynamic added mass per unit length; ton-sec 2/ft2

m Ship mass per unit length; ton-sec 2/ft 2

s

V Net shear force in y-direction; ton

Apparent mass per unit length including allowance for virtual

222
mass of surrounding water; ton-sec2Ift 2

Damping force per unit velocity per unit length-' ton-sec/ft2

P Total force per unit length acting upon ship hull; ton/ft

lZ Mass moment of inertia of hull per unit length with respect to

an axis normal to the x-y plane; ton-sec 2

El Bending rigidity; ton-ft 2

9



KAG Shear rigidity; ton
24

P Density of sea water; lb-sec /ft 4

A Submerged cross sectional area; ft 2

W = m g Gravity load per unit length where m is the ship mass per

unit length; ton/ft

&, r& Pitch angle and angular velocity, respectively; radians and

radians/sec

v, vr In general, the vertical component of particle velocity and

2
acceleration, respectively, at any depth; ft/sec and ft/sec 2

respectively

In Equations [All through [A51 the following restrictions are

imposed:

1
-_ _ >0

lt (xt) >0o

1

>0

El (x)

The ship is assumed to have free ends. Therefore, the end

(boundary) conditions imposed for all times are:

V (o, )- V a,--m (Ot) -- If t) -0

10



d
This is equivalent to 1 =-- =0 at x =0, and x = for all times.

dx

The initial conditions required are:

y, (x, o); Y, (x, o); (x, o); .11 (X,o); v (x,o)

The initial conditions actually supplied are:

yE (X,o); Y9 (X,o); y (X,,o) } (X,o)

Then the required I! (x,o) and V (x,o) are obtained by using:

aY (X, )
M (x, o) = E I (x) ax

VM (x,o)V (x,o) =
a X

In addition to these end conditions and initial conditions, certain

time-independent and time-dependent data are to be furnished as input to

the computer (see Appendix B).

The method of computation follows the general procedure given on

pages 70-71 of Appendix Fl of Reference 1 except that:

a. Time-dependent quantities used in Equations [All through

[A5] are now determined by the digital computer in accordance with the

methods of Appendix B rather than from data obtained manually from

analysis of an oscillographic record of ship motion, as described on page

68 of Reference 1.

b. Certain time-independent quantities (i.e., hull parameters)

used in Equations [All through [A51 may now be calcuJated by a digital

computer. 2

11



APPENDIX B

DATA REQUIREMENTS AND METHOD FOR COMPUTING DATA

To solve the set of equations ([All - [A51) given in Appendix A, the

following time-independent and time-dependent data are to be supplied (as

input to the computer):

BI. TIME-INDEPENDENT QUANTITIES

The hull parameters given here may be computed either digitally 2

8
or manually from ship plans. The time-independent data furnished are:

a. m (x) g. Time intervals

b. El Ix) h. The following quantities required
for the computation of P by

c. KAG (x)e
means of a digital computer:--

d. I (x)/iz

(x, t)
e. K- I i (x , t)

f. Initial conditions for rigid-
body and flexural motions
0(0), 0 (0), Y h (0), 1 rh  (0),

y p(x,0), Y (x, 0), yr (x, 0),

y (x, 0), ; (x, 0).
(Note: 0 is given in radians)

* This section supersedes Sectioh F3 of Appendix F, Reference 1.

or k.required for computing Pe by the method of Appendix F3,

Reference 1, need not be provided here. Here the program assumes that
the heave meter is placed at the center of gravity of the ship, and the
computation makes use of that fact. Moreover, (y, z), the coordinates of
the ship profile for each section, are now required in place of c (x), the
half-breadth required in Appendix F3, Reference 1. This means that the
points on the profile can be given at irregular spacings, thus allowing for
a better description of the ship line (discussed later).

12



p, U, Os, g, A, D, (y,z)

and the number of sections or stations and their respective spacings to be

used in solving the finite-difference equations.

In solving for P (see Appendix B2. 5), the initial values k (0) ande

h (0) are required (see Item f above).

B2. TIME-DEPENDENT QUANTITIES

Solution of the finite-difference equations I by means of the origi-

nal AML Code (TRC-4) required that time-dependent quantities ( e.g.,
dx - 9

nip d Pe , c etc. ) be supplied at several time intervals. However, an
d t,~*

extension of TRC-4 has now been devised whereby the time-dependent

quantities are computed within each time step. This routine requires only

time-independent data, some additional constants, and several points to

describe each ship line. The method for representing a ship line3 andthe

method for determining the time-dependent quantities are now described.

B2. 1. Ship Lines

Initially the revised program fits a series of third-degree poly-

nomials to the set of points describing each ship cross section in order to

3
get a function approximating the ship line. A segment of a cubic is fitted

between every two adjacent points so that in a neighborhood of each point,

the two adjacent segments coincide (i.e., at the junction point, the func-

tion and its first and second derivatives are continuous). The resulting

13



function may be written explicitly as follows:

a C2 3(- 3 + 31(-) J*(-
f(y) =+ Fy+ Y + 0  + .+ + ) +. .+ A ,, s y, s3+

where

Yo = 0 is the first water level,

yI' y 2 , Y3 "" YN-I are the second to N-i water levels used as

ordinates in the data points,

f (y) is the corresponding half-breadth at level y,

and

( oy)+ = 0 for y =. I

= (yyL > =1,2. . NY-1

(y-y) 3  for Y Y.

)3
Thus all terms that include the factor (y -yi are to be disregarded

whenever that factor is less than or equal to zero.

integrated for the general case:

K 3 K -2 K -3
A =fyf(y)dy= -F At ), +(+.31AY. 2 ) +(F-3 A AIyi)_

o i=1 i=1 2 3 ~
K .4 K
+ ~ ~ FL J.

+ ( A + A +. _ _Y 4

* The notation in Reference 3 has been altered in the following discussion
in order to remain consistent with the coordinate system and notation
used in Reference 1. However, the notation was not changed in the actual
FORTRAN coding.

14



where the last term < 0n+'-Z +( = 0 for i 0 *and where
i=O

K = N - 1 when all the (y - y) terms are positive, and K = N - J > 1)

when all terms (y -yNJ+ ) to (y ) are <0.

In accordance with the methods of Reference 3, the coefficients

a, b, c, A 0 , A1, ... AN are determined and stored in the machine

ready for use whenever the function is needed. In addition, the number

of inflection points in each ship line and their locations are determined

for use later to obtain the section area coefficient q for the added mass.

It should be noted here that the function fits the data points very

closely, and care should be taken to avoid including unnecessary points

as input; often, especially in the case of sections near the midship, in-

flection points appear when, in reality, there are none. This generally

occurs when more than two points are used to describe a nearly straight

portion of the ship line. Extreme caution should be exercised in approxi-

mating the stern section if it has a very narrow portion below the water-

line because the approximation is critical in that region and the function

may cross the axis or introduce extraneous humps.

If data points are taken from the final ship specifications given by

the naval architect, the above function should be a good approximation;

however, if the points are not accurate, fewer points should be used.

These can be selected from a plot of all the given points.

15



B2. 2 Determination of Half -Breadths c, c', c" and Corre-
sponding Immersions yt, y, y'" and Deadrise Angle p

When the dynamic problem begins, the immersion y is computed

(see Equation [3] of Reference 1):

y= D+Y -Yh - Yp

where (See Appendixes D, E, and F of Reference 1)

Sh
VW =-L Cos. o

22

on 7 [?V7 0 u O~)~Cos Os]

(V) = (v-i) +(;;v) (v-1) At'

W=v 0 (vl) + (V/v+ yv-1) ) 2t

and the superscript in terms of v refers to time, v being the current

time step described on page 75 of Reference 1; although all the variables

are functions of v, only those equations requiring insertion of v(or v ± k,

k = 1, 2 ... ), for the sake of clarity, contain the superscript here, where-

as variables in the other equations will be tacitly understood to contain

similar superscripts also.

See Notation for definition of symbols used here.

16



Next the uownward vertical velocity is found to determine the di-

rection of immersion:"

= - ' -P

where h 2A A 27 2;7x• n

=v V sin 0 .... V sin-WW fl 22 A 2 A 

_ h 2, V sin 2- (Vw+UCosO)t+cosOs

2 X IV AL S n e s

Y , = ( , - %c.g.)

- -9 ) j (v-2)

For each section the half-breadth c, corresponding to the com-

puted immersion y, is found -simply by solving the function approximating

the ship line at that immersion. In addition, calculation of the first de-

rivative yields the slope /3 of the line at the point in question (see

Appendix B of Reference 1).

Szebehely's relation, which accounts for the piled-up water about

a body penetrating a water surface, is then employed to determine the

actual half-breadth for the computation. If the ship is immersing (Y > 0),

a value c greater than the half-breadth c' corresponding to the ship line

position will be determined; conversely, if the ship is emerging (& < 0),

In the first computation, .he value for I and rh are extrapolated and

then recomputed by other relationships for the variables (see Appendix
B2. 5).

17



a value c" smaller than the half-breadth c' will be determined; and if

the immersion has reached a maximum (or a minimum) (Y : 0), the half-

breadth will remain unchanged.

The relation between half -breadths given by Szebehely is:

CI . - )cos/3
, t ta /

where c" < c < c, c' being the original half-breadth, and tan 13 is the

slope of the ship line at the point (y, c').

If a new half-breadth (c or c") is determined from cI and the

previous equation, it is necessary to find the corresponding draft y' or

y'", respectively. This is done with an iteration based )n linear interpo-

lation of the ship line function. For this reason either the function must

be monotonic and single-valued (i. e., corresponding to a nonbulbous

section) or additional information must be furnished to permit determina-

tion of which of the two possible values of f (y) is pertinent.

B2. 3. Determination of Submerged Area A, Section Area
Coefficient q1, Added Mass Coefficient C V and Added
(or Virtual) Mass m

Having found the depth of submersion y' or y' of the ship section,

it is possible to calculate the submerged area by the method described in

Appendix B2. 1 and the section area coefficient 71 making use of the inte-

grated ship line function by the method now described. The coefficient 7o

which is used in determining the added mass, is based on a modified section

18



area. If the section has any concave portions, these must be discounted

by drawing a tangent line between convex portions of the ship line and

treating the modified section as if it were solid. 7,13 This is done on the

machine by an iterative process, starting at the inflection points (see

Figure 1). Holding one point A fixed at the point of inflection and moving

another point B away from it, the change in the slope of the line connecting

the points AB is checked for a change in direction or sign. If the slope is

increasing and suddenly begins to decrease, the point of tangency (i. e.,

the moving point B) is fixed, and then point A is moved away from the

inflection point until, again, the change in slope changes sign. This point

A is fixed at the second tangency point. However, the new line is no

longer tangent to the first tangency point. Therefore, this process is re-

peated until a line sufficiently tangent to both ends of the concave portion

is determined.

If there is only one inflection point in the submerged portion of the

ship section, a point on the upper end of the ship line (i. e., point B) is fixed

at the waterline and only the lower point A is varied until tangency'is

obtained. If there are more than two inflection points, one or more tan-

gent lines will be determined in the manner just described.

The area A is then found by adding the area(s) of the trapezoid(s)

bounded by the tangent line(s) to the actual area of the remainder of the

submerged portion of the ship section (see Figure 2). -q is equal to this

area A which is the area of one-half the total modified cross section
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divided by the product of the half breadth and the draft at the water level

(i.e., c • y' or c" • y'" where c, c" andy', y"'l are determined in the

manner just described); i.e.,

A A
7 orc. y " c"y""

The added mass is now determined in the manner described by

Lewis, 6 Prohaska, 7,13 and Landweber. 4,5 For a cylindrical hull

partially submerged and vibrating vertically, the added mass per unit

length is given by

r 2

=-- C- Cv

where p is the density of sea water,

c is the local half-breadth at the waterline; in general, c - c

or c" here (see Appendixes B and F3 of Reference 1), and

CV is a coefficient depending upon the form of the submerged cross

section determinable as a function of 71 , c, and y' (or 77, c

and y"' if the ship is emerging rather than immersing).

The inertial coefficient CV may be determined by a conformal

transformation of the known flow about an elliptic cylinder of approximate

ship section. Consider the mathematical transformation used by Land-

weber and Macagno
4 ' 5

++ a3 + _;

zm z n zP I ,a 3 , a5  real
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in Which the indices m, n, etc., are odd numbers for the case of symmet-

rical sections. This transformation comprehends the transformations with

indices (m,n) = (1, 3);a 5 = 0, and (m,n) = (1,5) (1,7) (3, 7);a 5 = 0usedby

Lewis 6 and Prohaska, 7,13 respectively, to develop an analytical pro-

cedure for evaluating the virtual mass of a class of two-dimensional forms,

representative of ship sections, by means of conformal mapping of a

circle. Here z is the complex variable of the circle plane and Z is the

complex variable of the transformed plane. Different values of a 1 , a 3 ,

and a 5 give different sectional forms and corresponding variations in the

two-dimensional virtual mass.

For the three-parameter family of two-dimensional forms (a 5 #+ 0)

with (m, n, p) = (1, 3, 5), Landweber gives the following results (see

Equations [17], [161 (alternate form above it), [41, and [51 of Reference

5): a[ )2+3a? + 5a2]
CV - ( 1  35

(1 +a 1 '+a'1+a)
2

c ]+a 1 +a 3 +a 5

7= 1-a+a 3 -a 5

2_ 2 5 2 2 2

(1 -a - 3 a3 5-a ) (1 a, 3 a3 5a 5 )

2 cy1 (1+ +a 3 +a5)(l a, +a3a 5  (1+a3 ) 2-(a1+ a5)

(Only immersion variables c, y' are considered here. Emersion vari-

ables c", y'" are treated similarly.)
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Special cases of these results are:

Lewis Forms: (m, n) (1, 3); a 5 = 0

Prohaska Forms: (m, n) = (1, 5), (1, 7), (3, 7); a 5 = 0

For the Lewis forms, a 1 and a3 are solved in terms of p and ,i,

which are known (predetermined) quantities from the last two equations

(a 5 = 0). Thus

.2 12 2 2
3 2-1) +_ (p-1) V9 (P+1) . 8r (p 77+ T77+ 7 + 4 pq) I

12 4 (p2 ur+prt+rn+4p1)

p -+ (p+1) a

a =
3 p-I

Since a 1 and a 3 each assume two values, it is necessary to

establish some restrictions on the parameters. Consider that only the

function z = x + iy, which lies in the first quadrant, yields useful forms

lying within the rectangle of width 2c and depth y'. For this case, the

following restrictions given by Landweber must be imposed (see Equation

[41] of Reference 4):

"Landweber's X = I y"
B p c
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I < 2 < 5 1 <
2/I' C 41, I,

+7+
2,C 4p P
1 I < 2 <_ 5 1 >

1, 2 c p .. [,

Only one set of values for a1 and a meet these requirements,

hence a unique value for C V can be determined.

The coefficients for the Prohaska forms, a1 and a5 or a and a7

or a and a7 , can be solved in a similar manner. These forms as well

as the Lewis forms are, however, a special case of the Landweber forms

now to be treated.

To solve the Landweber three-parameter family of forms for a 1 ,

a3 , and a5 , we first introduce the parameter%

3 I

c (y 3

where I is the moment of inertia of the submerged cross section about

the transverse axis in the free surface

y =yp 2
12 J' f(y) y dy0

I and I are known (predetermined) quantities.

-, The resulting added mass per unit length m must be divided by 2000 lb
2 2 2

and 32 ft/sec in order to have m in terms of ton-sec /ft , the unit of
mass in Reference 1.
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Now a 1, a 3 , anda 5 are solved in terms of p, q , and I (all known

quantities) using the equations for p b.nd 77 given previously and the follow-

ing equation (see Equation [101 of Reference 5); the details of solution are

not given here. The results, of course, include those of Lewis and

Prohaska as special cases.

1= 2 [ + - a 2 2
- +/ -a 3 +23 (a -a a +a )-a a ]

3 5 5 351 28

-4 -3 2 2 -25

-/3 -/ a - 2 j (4a -5a a +6a ) +12/3 a
3 3 35 5 35

2 2 2 2
(3a + a5 ) (a3 + a5) j

here /3=1-a 1.

To meet the practical requirement that the forms should be within

a rectangle of width 2 c and depth y', the following conditions and restric-

tions are imposed: 5

Conditions for a - -2
c

Lower limit: r > r for a
3

Upper limit: >

I < 2 5  > 27

* Calculations of the added mass using these relations have been made on
the IBM digital computer at the Computer Center, University of Califor-

14
nia, Berkeley, California. The program for the control of the auto-
matic computations permits selection of any foreseeable number of
coefficients -many simple calculations have been done with various com-
binations of coefficients through a7 .

** O-and a(page 28 are notations in Reference 5 equivalent to notations
2/c and i respectively, in present report.
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here:
I II 5 1 5

+ 1 + 5+ 1
p 2 2p 41' p 4

T _ _ _ _ = = --- ; $_

a. l-a 1 l+3a 1-3a
a5 5 5

I'

1 and

+1,
p

Conditions and Restrictions on a5

Conditions Restrictions

r 1 s 1 + 2

a p
r 2  < s I  5 -- + 2

52 11+1r < s 3
2P

a 5 < 1

r2  < s 2  p-- 1

-3
16+ 11

p

2-+

a >-P
5- 2+7-+7

p
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Restrictions on a =71

" (r) = nm2 = _1+) 2 -3a 5 2[8(+)

\2 1 5

pp

"~ ~ ~ (r 2- a~ 2J,2 3a 5 2 [3(1)2 + 5)

3 V 5 1 - W
p 5 2)

o~LI (s) p-oM=,

128(1) ( 1 + 3a 5)

71 9a2[32(5)2+ 44( 1 ) + 4 7] + 8a 5 [4( ) 
- 11+ 4)+ 3 +

a (S 2 ) = a 2  
U 2I 2

128(5) (1 - 3a 5 )
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To ascertain which forms associated with a particular class of

ship (or even sections of a given ship) are preferable - as determined

by comparison between the theoretical and experimental response -- it is

desirable that CV be computed for the Lewis, Prohaska, and Landweber

forms; the latter two for various pertinent confirmations of m, n; and

m, n, p, respectively. This would, of course, only require coding of the

Landweber forms inasmuch as the other fcrms are included as special

cases. Reference 1 used Figure 24 of Reference 7, corresponding to

(m, n) = (1, 5), to compute C V . The final results for the time-varying

stress on the hull girder amidships using values of C so computed were
V

in good agreement with experiment (see Figure 23 of Reference 1). Good

judgment in the initial choice of the analytical form to be used for a par-

ticular ship cross section (which may vary between the extreme U to

extreme V in actual form) may be applied by comparing the theoretical

values and the experimentally obtained values of CV or virtual mass for

the forms (U, UV, V) and indices (m, n) used in References 7, 13, and 15.

dx
B2.4. Determination of Velocity of Advance j- and Downward

Relative Velocity 7r

The downward relative velocity of the ship, r , is now found

(see Equations [2] and [3] and Appendixes D and E, Reference 1, and

Notation):

Yr w -h - + (U -u cos ) 0

dx
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where

dx - (U-u cos )
dt dt s

and
h 2=

u - cos 0
2 X w n

B2. 5. Determination of Forcing Function IP and Rigid-Body
e

Motions Yh' Jh' Yp p j ' ¢

d
P = P - gm =- (mr + (g + ir) PA - gm

e e s dt r s

wher.e

v =hw V (V+Ucos 0 )cos 0n

and where

S L(Vw+ Ucos 0s) t + cos 0On w s n s]

The first computation of P may not be very accurate due to itse

dependence on extrapolated values for and rh. Hence, the program re-

computes values for @ and k h as follows: (See pages 68 and 76 of

Reference 1.)
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N-I ( (v' )
A t '

V) .(v-I) n=O e n+

+N (h +N.

n=O 'S n+

NZ 1 (V -Y
(v) (v-I) A t" 7e A, Xn+ "Xc.g.)

N-I / 2
Ms "x rxO n + Y2.xC .

n=O s n +

where x is the distance from the center of gravity to the stern and. c.g.

the subscript n + 1/2 refers to the midstation values between Stations

n and n + 1.

Other parameters are computed from these new values:

(v) (v-1) +(v) -(v-1) At'

yV =y I+(y V- (.) At')

(v) v(V) . (+ 1) At'

Yp Y + Up Yp 2
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Subscripts on yp, kp are tacitly understood to pertain in the actual

coding. Then the immersion y' is recomputed from the newer values of

its dependent variables and the subsequent computations are repeated.

The resulting force P is compared to the first P . If they are not suffi-e e

ciently close, then k h and S are again recomputed and the process is

repeated until a satisfactory P is found for each section.e

B2. 6. Determination of Total Mass per Unit Length p1 (x, t)
(Including an Allowance for Virtual Mass m (x, t) and

Damping Force P (x, t))

dx
Thus the time-dependent parameters m, T- and Pe are used to

determine p ( m+ m ) and other variables (e.g., P) required to find thes

transient vibration of a ship using the equations in Appendix A. In par-

ticular, ' , the time-dependent damping force per unit velocity per unit

length, is found.from the expression. = K. The constant K and
IL(X, )w

modal frequency o are given (wcean be determined easily by obtaining a

normal mode solution 8 using a code devised by the Applied Mathematics

Laboratory of the Model Basin or, more roughly, from Schlicks Formula).

The value of the constant K depends on the class of ship and is determined

in accordance with the methods of Reference 16; w = 1 if it is desired to

use the damping constant as a frequency independent parameter.

The remainder of the program is essentially unchanged from the

original TRC-4 used in Reference 1.
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APPENDIX C

COMPARISON OF PRESENT METHOD OF COMPUTATION
WITH ALTERNATIVE METHOD GIVEN IN APPENDIX F3 (PAGES

80 - 82) OF REFERENCE 1

It is of interest to compare the present method with the alterna-

tive method of Reference 1 (pages 80-82).

The present method uses the coordinates to determine a function

approximating the ship profile (i. e., a function of half-breadth versus

immersion) thereby superseding the procedure described on pages 80-81

of Reference 1 (paragraph a) for determining the half-breadth for a given

immersion using a data storage technique. Only one-half the ship pro-

file need be considered, due to symmetry.

The present method uses the ship line function in the dynamic

problem to find a value for Pl by taking the arctangent of the first deriv-

ative. This supersedes the procedure described on pages 81-82 of

Reference 1 (paragraph b) for determining j8 by interpolation.

The present method obtains the submriged area A by integration

rather than by using an approximating sum as described on page 82 of

Reference 1 (paragraph c).

In accordance with the present method, the added mass is com-

puted at the time and immersion when it is needed and not prior to the

time-dependent calculations as described on page 82 of Reference 1

(paragraphs d and e).
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The computation of the immersion and the hydroaynnamic force,

etc., is described in Appendix B of this report.
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APPENDIX D

EXTENSION OF ANALYSIS TO IRREGULAR WAVES

The wave profile treated in this analysis is a regular wave; see

page 51 and Appendix D of Reference 1. Such simple waves can, however,

17
serve as a basis for the synthesis of more complex waves. For ex-

ample, an irregular wave moving in one direction, with wave crests

parallel, may be treated as a linear summation of regular sine waves of

different wave lengths and periods. This representation can be extended

by adding a different constant phase angle to each component wave. Thus,

the treatment given in this report for a regular wave can be extended to

include the terms necessary for a deterministic representation of an ir-

regular wave (i. e., arbitrary wave of encounter for a unidirectional sea).

An irregular wave can also be characterized from a statistical

point of view. Thus an element of probability may be introduced into the

description of the sea by statistically distributing the phase angles in ac-

cordance with a certain distribution function so that all phase angles are

17 17
equally probable. For this case the spectral density function" repre-

sents the manner in which the energy of the composite wave is distributed

over the frequency, thereby fully characterizing the nondeterministic

irregular wave of this type.

The sea waves may, however, exhibit an irregularity in two

directions. These irregular waves may be synthesized from component
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sine waves assumed to move in any direction. The spectral density

function now represents the manner in which the energy of the composite

waves is distributed in both the frequency interval and the direction in-

terval. Extension of the treatment given in this report for a regular wave

may yield a practical procedure for treating nondeterministic (statistical

or probability) representations of irregular waves.
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